UNITED STATES DEPARTMENT DF COMMEPGE Office of the Under Secretary for Dceans and Atmosphere vashingeon. O. 20230

MAR 241998

To All Imterested Government Agencies and Public Groups:
Under the National Environmental Policy Act, an environmental review has been performed on the following action.

TITLE: Environmental assessment and Regulatory Impact review for a regulatory amendment to revise maximum retainable bycatch percentages for shortraker/rougheye rockfish in the Bering Sea and Aleutian Islands Management Area

LOCATION: Federal Waters of the Bering Sea and Aleutian Islands

SUMMARY:
This action establishes reduced maximum retainable bycatch (MRB) percentages for shortraker and rougheye rockfish caught in the Aleutian Islands area. MRB percentages are a management tool to slow down the rate of harvest of a species placed on bycatch catch status and reduce the incentive to operators of fishing vessels to target on the species. This action establishes a bycatch species group for shortraker and rougheye rockfish in the Aleutian Islands subarea. The MRBs for these species are reduced Erom 15 to 7 percent for deep-water species and from 5 to 2 percent for shallow-water species. The new MRBs are intended to minimize the regulatory discard of these species and slow the rate of harvest to reduce the potential for overfishing.

RESPONSIBLE OFFICIAL:

Steven Pennoyer
Administrator, Alaska Region
National Marine Eisheries Service
709 West $9 t h$ Street
Juneau, AK 99802
Phone: (907) 586-7221

The environmental review process led us to conclude that this action will not have a significant impact on the environment. Therefore, an environmental impact statement was not prepared.

A copy of the finding of no significant impact, including the environmental assessment, is enclosed for your information.
Also, please send one copy of your comment to me'in Room 5805 , psp, U.S. Department of Commerce, Washington, D.C. 20230.

Sincerely,
Suspmo Foch ber
Susan Fruchter
Acting NepA Coordinator,

Enclosure

FINAL
ENVIRONMENTAL ASSESSMENT/REGULATORY IMPACT REVIEW
FOR A REGULATORY AMENDMENT TO

REVISE MAXIMUM RETAINABLE BYCATCH PERCENTAGES FOR SHORTRAKERIROUGHEYE ROCKFISH IN THE BERING SEA AND ALEUTIAN ISLANDS MANAGEMENT AREA

Prepared by staff of the Alaska Department of Fish and Game and the National Marine Fisheries Service Alaska Regional Ofice

February 25, 199 8

TABLE OF CONTENTS

Executive Summary 1
1.0 NTRODUCTION ;
l. Purpose of and Need for the Action 3
1.1.! Genera! 3
1.1.2 Why changes to Aleutian Islands shortrakerfougheye MRBs have been proposed 4
1.2 Alternatives Considered 7
1.2.1 Alternative 1: Status Quo 7
1.2.2 Altermative 2 (Preferred) 3
1.3 Background for Data Analysis of Shortraker/rougheye bycatch in the Aleutian Isiands 8
2.0 NEPA REQUREMENTS: ENVIRONMENTAL IMPACTS OF THE ALTERNATIVES 14
2.1 Environmental Impacts of che Altematives 14
2.2 Coastai Zone Management Act 15
2.3 Conclusions or Finding of No Significant Lmpact I5
3.0 REGULATORY MPACT REVIEW: ECONOMIC AND SOCIOECONONIC IMPACTS OF THE ALTERNATTVES 16
3.1 Economic Impact on Small Entities 16
4.0 REFERENCES 18
5.0 AGENCIES AND NNDIVIDUALS CONSULTED 19
6.0 LIST OF PREPARERS 19
List of Tables 19
List of Figures 19

Executive Summary

Regulations a: 50 CFR part $679.20(\mathrm{c})$ establish maximum retainable bycatch (MRB) percentages for groundfst species or species groups. These MRB percentages astablish che amount of a species that may be retained on board a vessel relative to amounts of other retained spectes open to directed fishing. MRB percentages serve as a management tool to slofy down the rate of harvest of a species placed on bycatch status and to reduce the incentive to fishing vessels to targer on the species. Nonetheless, vessels may "top off ${ }^{\prime}$ their retained catch of species open to directed fishing with a species on byeatch status up to the MRB amount. MRB percentages do rot necessarily reflect an "incrinsic" incidental catch rate, but racher reflect a balance between the recognized need to slow harvest rates, minimize the potential for undesirable discard, and, in sorne cases, provide an increased opportunity to harvest avilable toal allowable catch (TAC) through limited "topping ori' aecivity.

At its Jure 1997 meeting, the Norh Pacific Fishery Management Council (Council) requested that NMFS explore options for reducing MRB percentages tor shortraker and rougheye rockfish (SR/RE) in the Aieutian Islands subarea (AD) to respond to high rates of bycatch in other groundfish fisheres and to concerns that the existing MRE percentoges are higher than incidencal catch levels, thus allowing for undesirable levels of "copoing off" of the valuable tockfish species. Tais was prompred by the low $A B C T A C$ and biomass o: $S R R E$ in the AI.

Alternative 1: Status Qup - Do not revise existing MRB percentages.
Alternative 2 (Peterred): Revise MRB peccentages for shortraker roughese rockfish in the Aleutian lsiands subarea as follows. Opcions for a reduced MRB percentage relative to deepwater and shallow water species complekes are as follows.

	MRB percentage relative to the Deepwater camplex (rockitish, Geceland rurbor, stoiefisi, flathead sole)	MRB percentage relative to the Shallow water complex Gollock, P. cod, Atka mackerei, flatish, ocher species, non groundfish)
Curtent MRB (Altemate !)	15	5
Aternme 2 options	9	3
	7 (pretrred)	2 (preferred)
	5	1
	3	

Based on an analysis of 1995 and 1996 observer cand. aggreyand tockith are commony encountered in the Aha Mackere! fisher, and the overall bucath rates are near the wRg leyel. Howerer, the majority of
bycaught shortraker/rougheye are caught in only a few hauls. In 1995, 74\% of the bycaught shortraker/rougheye were taken in 3.6% of the Atka Mackere! rauls, and in 1996, 70.2\% of the shortaker/rougheye were taken in 3.1% of the hauls. The POP fishery, on the ocher hand, has an overall bycatch rate of non-POP rockfish well below the established MRB of 15%, however, non-target rockfish are more commonly encountered in individual tows. There is also considerable variability between years in the POP fishery. Roughly 25% of the hauls caught rockfish at a rate greater chan 7% in 1995 , and these hauls accounted for 72% of the bycaught rockfish. In 1996, 46.4% of the hauls caught rockfish at a rate greater than 7%, and these hauls accounted for 82% of the rockfish bycatch. Similarly the hauls with shortraker/rougheye bycatch rates above 7% in 1995 accounted for 10% of the hauls and represented 50% of the shortraker/rougheye bycatch, but in $1996,28.6 \%$ of the hauls exceeded 7% and these hauls accounted for 78% of the shortraker/rougheye bycatch.

Industry reported data on retained catch composition do not indicate that MRB percentages established for SR/RE are being violated routinely. Instead, these data indicate that the current MRB percentages are fairly generous relative to the amounts of SR/RE that actually are retained relative to other retained catch. Based on weekly production reports submited since 1995, the overall ratio of retained amounts of SR/RE in the rockfish fisheries relative to other retained catch has ranged from 4.5 to 5.7 percent. The MRB percentage for $S R / R E$ in this fishery is 15 percent. During the same time period, the retained amount of SR/RE in the Atka mackerel fishery relative to other retained catch has ranged from and overall rate of 0.08 to 0.2 percent. The MRB percentage for $S R / R E$ in this fishery is 5 percent.

To the extent that Altemative 2 would implement reductions to specified MRBs, slower harvest rates would result, management ability would be enhanced to maintain harvest amounts within specified TACs, and the potential of reaching overfishing levels would be lessened. This alternative, cherefore, would facilitate NMFS's ability to manage fisheries within the TAC levels assessed by the annual EA prepared for the groundfish specifications and within the scope of effects the annual EA determines these harvest levels may have on the biological environment as well as associated impacts on marine mammals, seabirds, and other endangered or threatened species and critical habitat.

At its September 1997 meeting, the Council recommended that MRB percentages for SRRE in the AI be reduced to 7 percent relative to other rockfish species, Greenland turbot, sablefish and flathead sole and to 2 percent relative to other groundfish and non groundfish species. The MRB percentage relative to arrowtooch flounder would remain at 0 percent. These percentages are intended to reduce the incentive to top off target catch with SR/RE while minimizing the potential for regulatory discards of SR/RE during a fishing trip. The catch rates of SR/RE should decrease accordingly. Nonetheless, overall bycatch amounts still could pose concern given the small TAC amounts annually specified for SR/RE and the high volume POP and Acka mackerel trawl fisheries in the AI. As a result, the Council intends to consider in the future management rneasures that would authorize a gear allocation of $S R / R E$ so that inseason management actions can be taken to control trawl bycatch more effectively without threatening the closure of the fixed gear fisheries.

A significant negative economic impact on the catcher vessels that retain SR/RE is not likely as a result of the proposed action given the small amounts of these rockfish species that have been retained by catcher vessels fishing in the AI subarea in past years (3,00016 in 1990). Conversely, the proposed action is expected to have a positive impact to the extent that the reduced MRBs percentages for SR/RE would reduce the potential for reaching the specified overfishing level and limit the number of required fishery closures necessary to keep bycatch amounts of SR/RE at a minimum. Given the above assessment, NiMFS
has determined that che proposed action would not result in a significant economic impact on a substantial number of small entities. As a result, a regulatory flexibility analysis was not prepared.
has determined that the proposed action would not result in a significant economic impact on a substantial number of small enticies. As a result, a regulatory flexibility analysis was not prepared.

1.0 INTRODUCTION

The groundish fisheries in the Exclusive Economic Zone (EEZ) (3 to 200 miles offshore) off Alaska are managed under the Fishery Management Plan for Groundfish of the Gulf of Alaska and the Fishery Management Plan for the Groundfish Fisheries of the Bering Sea and Aleutian Islands Area. Both fishery management pians (FMPs) were developed by the North Pacific Fishery Management Council (Council) under the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act). The Gulf of Alaska FMP was approved by the Secretary of Commerce and become effective in 1978 and the Bering Sea and Aleutian Islands Area (BSAJ) FMP become effective in 1982.

Actions taken to amend the FMPs or implement other regulations governing the groundfish fisheries must meet the requirements of Federal laws and regulations. In addition to the Magnuson-Stevens Act, the most important of these are the National Environmental Policy Act (NEPA), the Endangered Species Act (ESA), the Marine Mammal Protection Acr (MMPA), Executive Order (E.O.) 12866, and the Regulatory Flexibility Act (RFA).

NEPA, E.O. 12866 and the RFA require a description of the purpose and need for the proposed action as well as a description of alternative actions which may address the problem. This information is included in Section 1 of this document. Section 2 contains information on the biological and environmental impacts of the atternatives as required by NEPA. Impacts on endangered species and marine manmals are also addressed in this section. Section 3 contains a Regulatory Inpact Review (RIR) which addresses the requitements of both E.O. 12866 and the RFA that economic impacts of the alternatives be considered.

This Enviromental Assessment Regulatory Impacr Review (EARIR) addresses alternatives for changes to maximum retainabie bycatch (MRB) percentages that are used to determine retainable bycatch amounts of shortraker/rougheye rockfish in the Aleutian Islands subarea (AD) when these species are closed to directed fishing.

1.1 Purpose of and Need for the Action

1.1.! General

Descriotion of maximum retainable bycatch (MRB) amounts. NMFS annually assesses each groundfish total allowable catch (TAC) amount to determine how much of a species' TAC is needed as bycatch in other groundish fisheries. The remainder of the species TAC is made available as a directed fishing allowance. Directed fishing is defined in regulations as "any fishing activity that results in the retention of an amount of a species or species group on board a vessel that is greater then the MRB amount for that species or species group." The MRB amount of a byeatch species is calculared as a percentage of ocher species open for directed fishing that are retained on board a vessel. The MRB percentage of a bycatch species that may be retained is established in regulations goveming the groundish fisheries. Current regulations prohibit the retention of a species closed to directed fishing in amounts that exceed the MRB percentage and excess catch must be discarded.

The MRB percentages established in regulations serve as a management tool to slow down the rate of harvest of a species placed on bycaich status and to reduce the incentive to fishing vessels to target on the species. Nonetheless, vassels may "top off" their retained catch of species open to directed fishing with a species on bycatch status up to the MRB amount. Generaily, a default of 20 percent is established to serve
as a general management tool to slow the harest rate of a species, yet avoid significane discard amounts of these species to the extent they are taken as bycath in other groundifh fisheries. However, for ocher species such as Greenland turbor, rockfish, sablefish, and hathsh, MRE percentages are set at levels that recognize increased or decreased bycatch of chese species relative to certain other species.

During the course of a fishing year, NMFS routinely cioses "directed fishing" for specifed grourdish species. Directed nishirg closures occur because a fishery has reached a halibut or crab bycatch allowance, the directed fishing allowance for a target groundfish species has been reached, or because of overfishing concerns for another groundfish species taken as bycatch. When directed fishing for a species is closed for any of these purposes, bycatch amounts of the species may still be retained on board a vessel up to the specifed MRB percentage of other species open to directed fishing that are retained onboard the vessel, NMFS attempts to manage groundfish TACs so that directed fishing closures are implemented in a timely enough manner that leave sufficient portions of the TAC to provide for bycatch in other fisheries. If TAC is reached, however, the species becomes "prohibited" and all catch of the species must be discarded.

Denvation of existing MRB percentages.

Current MRB percentages for the BSAI groundfish fisheries are listed in Table 1. These percentages first were established in 1990 (55 FR 9897, March 16, 1990) and subsequently revised several cirmes. The MRB percentages first established in 1990 attempted to reflect "intrinsic" incidental catch rates in gearspecific fisheries for certain high valued species of lower relative abundance, such as sablefisti, Greanland turbor, and rockfish species. Other percentages were set ar a general default value of 20 percent to dissuade target operations on species on bycatch states, yet avoid the discard of these species in the event their incidental catch comprised an unanticipated high proporion of the catch.

The species-gear-area approach to allowable byearch amounts gave rise to unnecessary complexity and confusion. In 1995, changes to MRB percentages were implemented (60 FR 40304, August 3, 1995) that antempted to make these percentages less complex by establishing greater consistency becween areas and eiminating gear disinctions. In 1997, the MRB percentages for Gulf of Alaska sablefish were reduced to respond to industry and management problems that resulted from "topping off" activity (62 FR: 1109, March 11, 1997).
"Topping off" is a recognized and generally accepted activity associated with species on bjeatch stanus. The incentive for fishermen to engage in this activity is directy related to the value of, and available market For, the bycarch species relative to the assocized operation costs of fisting first for and retaining one species and subsequently topping off that reained carch with a bycatch species up to, and including, the allowabie MRB percentage. From a management perspective, MR3 percentages are a tool used to slow down the harvest rate of a species. These rates do not necessarily reflect an "intrinsic" incidental catch rate, but racher teflect a balance between the recognized need to slow harvest rates. minimize the potential for undesirable discard, and, in some cases, provide an increased opportunty to harvest available TAC through limited "topping off"ectivity.
1.1.2 Why changes to Aleutian Islands shortraker/rougheye MRBs have been proposed

Curraty, MRB; are established for aggregate rockitish species that are ciosed to directed fishing. These spectes were aggregated for purposes of calculating MRB amounts because of concems that separate MRB for each rockfish TAC caregory would increase the overall amourt of rockfish that could be retained
and increase havest rates higher than netessary through "topping of" activity.

Pacific ocean perch (POP), and four other associated species of rockfish (norhem rockfish, rougheve rockish, shortraker rockish, and sharpchin rockish) were maraged as a complex in the Aleurian Islands and Bering Sea subareas from 1079 to 1990. Known as the POP complex, these five species were managed as a single entity with a single TAC. in 1991 , the groundfish specifications changed the species composition of the POP complex. For the Bering Sea, the POP complex was civided into two subgroups: (1) Pacific ocean perch, and (2) shortraker, rougheye, shapchin, and northern rockishes combined. For the Aleutian Islands subarea, the POP complex was divided into three subgroups: (1) Pacific ocean perch, (2) shortaker/rougheye rockfish, and (3) sharpchin/rorthem rockfish. These subgroups were established to protect Pacific ocean perch, shortraker rockfish, and rougheye rockfish, the thres most valuable cormercial species in the assemblage, from possible overtishing. Each subgroup is assigned an individual TAC.

Although shorraker/rougheye are highly valued species, amounts available to the commercial fisheries are limited by relatively small acceptable biological catch (ABC) and TAC amounts that are fully needed co provide bycatch amounts in ocher groundfish fisheries. As a result, the directed fishery for shortraker/rougheye typically is closed at the beginaing of the fishing year.

	YEAR		
Shorraketiroughey ecategory	1995	1996	1997 (titru 9/5097)
ABC (mt)	1,220	938	939
TAC (mt)	1,098	938	938
Harvest (mt)	559	959	1,045

As part of the aggregate rockish MRB, the combined amounts of SRRE and other rockfish species ciosed to diracted fishing must not exceed the established MRB percentige of 15 percent relative to ocher rockfish species, sablefish, Greenland turbor, and flathead sole open to directed fishing and 5 percent relative to ocher species (Atka mackerel, pollock, yellowana sole, rock sole, "ocher flatish," squid, and "ocher species." As with all other species in the BSAI, the MRB percentage of aggregate rockfish relative to arrowtooth flounder is 0 . Most of the harvest of SR/RE is taken as bycatch in the Pacific ocean perch fishery and to a lesser extent in the Atka mackerel fishery.

Amounts of AI shortrater/rougheye harvested and retained (mb), by fishery						
Fishery	year					
	1995		1996		$\begin{aligned} & \text { :997(teru } 96997) \\ & \text { harv. rec. } \end{aligned}$	
Trawl rockish (mostly POP)	347	337	633	575	778	635
Trawl Atka mackerel	95	52	129	74	162	90
Travl Other	17	8	4	0	5	0
H\&L Sablefisin	75	40	57	20	35	2
H\&L Greenland turbot	6	5	12	11	0	0
H\&L Other	18	12	120	71	66	2
TOTAL	558	454	960	751	1045	729

* source: NMFS best blend catch database

In 1997, inseason monitoring and management of A1 fisheries were frustrated by unanticipated higin harvest rates of shortrakerfrougheye in the Pacific ocean perch and Aka mackerel trawt asheries. These higher than anticipated catch rates resulted in the closure of several fisheries to prevent overishing of shortraker and rougheye. Retention of Adka mackerel, Pacific cod, and rockfish by vessels using trawl gear and retention of Pacific cod by hook-and-line vessels in the Aleutian Istands were prohibiled. The directed fishery for Greenland turbor by vessels using hook-und line gear was closed. The AI fisherics for Atka mackerel, sharpehin/northem rockfish, Pacific cod and Greeniand turbot were closed prior to the amainment of the individual TACs, disrupting fishing plans and creating a loss of economic opportunty for the fishing industry. A summary of these evencs is presented belows.

Jan 1: \quad TAC $=A B C=938 \mathrm{mt}$ Overfishing level $=\overline{1,250} \mathrm{mt}$ Accumulative' 97 harvest $=0 \mathrm{mt}$ (1996 harvest was 959 mt)

Mar !	Total year to date Bycatch in other fisheries about 80 mt	80 mt
Mar 7	1 week bycatch in other fisheries about 300 mt	380 mt
Mar 22	1 week bycatch in other fisheries about 200 mt	580 mt
Mar 29	I week bycatch in other fisheries about 100 mc	680 mt
Apr 2	Retention prohibited in all fisheries and with the management expectation that topping off activity would end, resulting in minimal becatch for the remainder of the year	
Ap: 10	Total catch thru April 5 estimated at 800 mt	800 mt
Apr 15	POP fishery reopened in reporting area 542 for a 24 hr period	
Apr 18	Availability of bycatch data for the week ending $4 / 12 / 97$ unexpectedly showed a continuation of high SR/RE bycatch rates ($100 \mathrm{mc} / \mathrm{wk}$)	1,000 +mt
Apr 21	Retention of trawl caught Atka mackerel and POP prohibited to prevent further bycatch of SRRE; bycatch continuing in HeL P.cod fish at rate of about $5 \mathrm{~m} / \mathrm{wk}$	
1,100 \div mt		
May 10	Retention of H \&L caught P. cod and Greenland turbot prohibited	
May 12	H\&L Greenland turbot reumed to bycatch sarus	
May 27	Retention of trawl caught P. cod prohibited	
Jun 17	NMFS issues cautionary News Release to IFQ sablefish fishemmen	1,2:2mt
ful 4	Daily production reports required of processors that catch or retain SR/RE	
Sept 6	Current estimate of SR/RE harvest in all fisheries Downward adjustment due to the debriefed observer daw and late/revised industry reports	1,045 mt

In response to the above series of events, the Council requested at is June 1997 meeting that options to reduce the MRB percentages for SR/RE be explored to minimize the potential for attainuent of TAC and/or overfishing leveis and the resulting closures of ocher fisheries. The Council aiso noted that ocher managernent measures may be considered in the furure to address the competitive use of SR/RE bycatch in trawl and non trawl fisheries, including gear allocations or time/area elosures.

1.2 Alternatives Considered

1.2.1 Alternative 1: Status Quo

Existing MRB percentages set out in Table 1 of this EARR would remain unchanged. Fishery operation or management concerns described in Section 1.1 of this document would not be addressed.

1.2.2 Alternative 2 (Preferred)

Establish shotrakerfougheye MRB percentages separate from those establithed for other aggregate rockish and reduce the MRBs for this species category from the curtent 15 percenc. Options for a reduce MRB percentage relative to deepwater and shallowater species complexes are as follows.

	MRB percentage relative to the Deepwater complex (rockfish, Greenland ourbot, sablefish, flathead sole)	MRS percentage relative to the Shallow water complex (pollock, P. cod, Atka macherel, latish, other species, non groundfish)
Curent MRB (Altemative 1)	15	5
Alternative 2 options	9	3
	7 (Preferred)	2 (Preferred)
	5	1
	3	

1.3 Background for Data Analysis of Shortraker/rougheye bycateh in the Aleutian Istands

Data and assumptions

Observer data collected from hauls made during $199 j$ and 1996 were analyzed to describe the bycatch of shortaker/rougheye in the Alcutian Istands. The observer data were provided by the National Marine Fisheries Service and included vessel, haul and catch information. In total, 4,066 hauls were observed in 1995 and 4,931 in 1996 . All of the gear types (botrom trawl, pelagic trawl, pot and longline) were included in the anaysis. Because the Maximum Recainable Bycatch (MRB) categories apply across all gear opes, distinctions in gear were not included in this report.

Targe: assignmencs for individual hauls were based on dominant catch in the following manner. The combined catch fom the target complexes (Atka Mackerel, sablefish, all rockfish, Pacific cod, pollock, yeilowin sole, flathead sole, rock sole, Greenland turboc, ocher flatfish and arrowtooth flounder) was subtracted from the total groundfish catch for a haul, and this remainder was elassified as "other groundnish". This "other groundfish" amount was compared to the weight of each of the target compleves and the target complen with the dominant eatch by weight was assigned as the target of the haul. Following assignment as a pollock target, pollock hauls were further classified as bottom trawi or peiagic trawi for pollock if the percentage of pollock in the haul was less than or greater than 95%, respectively. Arrowtooth flounder was not included as a possible target assignment, because of the minimal actual hargeting of arrowiooth flounder, especinlly in the Aloutian lslands. All hauls classified as a rockfish target were turther classitied by dominant rockfish species into the following subtargets: pelagic rockfish; Pacifie Ocean perch (POP); northern rockfish; shortaker/rougheye; shorspine thomyhead; oher rockfish; or
demersal shelf rockish.

Qbserved catch and bycatch

The dominant fisheries in the Aleutian Islands are the Adka Mackerel and pelagic pollock fisheries (Table 2). Atka Mackere! hauls comprised 45.5% of the observed groundfish catch in 1995 and 61.3% of the groundfish catch in 1996 . Pollock hauls accounted for 38.3% and 17.3% of the total groundfish carch in 1995 and 1996 , respectively. Hauls for POP and Pacific cod made up between 5% and 10% of the total groundfish catch in the two years as well.

As would be expected, most of the POP by weight (approximately 85%) was taken in both years by the POP target fishery, and approximately 10% was taken as byeatch in the Atka Mackerel fishery. Shortraker/rougheye was primarily taken in the POP nishery (39.1% of the catch in 199) and 62.1% in 1996), and in the Atka Mackerel fishery (15.9% and 10.9% in 1995 and 1996 , respectively).

Shortraker/rougheye were also caught in hauls classified as shorraker/rougheye rockfish subtargets, and these hauls comprised 22.9% and 12.5% of the shortraker/rougheye waken in 1995 and 1996 , respectively. There is no directed fishery for shortraker/rougheye, however, hauls assigned this targer had shortrakerfougheye as the dominant rockfish catch. In total 16 hauls fell in this category in 1995 and 17 hauls in 1996, indicating that few hauls were specifically targeting shortraker/rougheye to the extent that it could be classified as a target. Shortrakerfrougheye were also taken in the "other groundfish" category in 1995, which accounted for 12.2% of the shortraker/rougheye bycatch. A review of the hauls in this category indicated that most of the hauls were longline hauls, and that the "other groundish" designation came from the dominance of non-target species such as grenadier in the catch.

Because of the dominance of shortraker/rougheye bycatch in the POP and Atka Mackerel fisheries, the analysis focused on these two targets. Currently the MRB allowances for a bycaught species are similar across the shallow-water fisheries and across the deep-water fisheries. The Atka Mackerel fishery is representative of the shallow-water fisheries, and similarly, the POP fishery is representative of the deep-water fisheries.

The Total Allowable Catch (TAC) of Adta Mackerel was apportioned beoween the Eastem (NMFS statistical area 541), Central (Area 542) and Westem, (Area 543) Aleutian Islands in both 1995 and 1996 (Figure 1). The POP TAC was apportioned into these regions for the first time in 1996.
Shortraker/rougheye currently has an Aleutian Islands-wvide TAC. The 1995 shortraker/rougheye TAC was $1,093 \mathrm{mt}$, and 559 mt wete taken in groundfish fisheries, with observer reports accounting for 288 mt , or roughly 32% of this rockfish catch (Table 3). In 1996, the TAC for shortraker/rougheye was set at 938 mt with a catch was 959 mt of which approximately 62% or 392 mt was on observed hauls. Coincidental with the split of the POP TAC into three districts, the shortakerfrougheye TAC has been met or exceeded in the last two years (1996 and 1997), and the POP and Acka Mackerel fisheries have been at or near TAC for the past three years.

Qbserved byenth rates

The overall bycatch rates of various rockfish species expressed as a ratio of the mean rockfish species catch to the mean directed species catch are provided in Table 4 for the Aka Wackerel fishery, and in Tables for the POP fishery. The rates and coefficents of variation (CV) were calculated as previousty in
the examination of bycatch in rockfish fisheries in the Gulf of Alaska (Heiferz and Ackley 1997). The CV, the ratio of variance to the mean, allows a comparison of the amount of variability associated with different means.

The overall rate of shortrakerfougheye bycatch in the Atka Mackerel fishery was 0.09% in both 1995 and 1996 (Table 4). The overall rate of aggregated rockfish bycatch in this fishery was 4.4% and 5.4% in 1995 and 1996, respectively, or approximately at the established MRB rate of 3%. Among statistical areas, Area 541 had the lowest bycatch rates of shortraker/rougheye (0.06% in 1995 , and 0.01% in 1996) and aggregated rockfish $(3.6 \%$ in 1995 and 2.34% in 1996) in the Acka Mackerel fishery. The Area with the highest rates was 543 (0.12% and 0.10% for shortraker/rougheye, and 6.67% and 6.6% for aggregated rockfish in 1995 and 1996 , respectively), with relatively high rates also occurring in Area 542 in 1996. The primary rockfish bycatch species in the Atka Mackerel fishery is northern rockfish.

The bycatch rate of shortraker/rougheye in the POP fishery more than doubled berween 1995 and 1996 (Table 5). The 1995 bycatch rate was 2.11%, and the 1996 bycatch rate was 5.08%. Athough similar to the byeatch rate for northern rockfish in $1995(2.75 \%)$, shortraker/rougheye was the rocktish complex caught at the highest rate in 1996. The overall bycatch rate for non-POP aggregated rockfish in the POP fishery was 5.09% in 1995 and 7.89% in 1996. Area $54!$ was the area wich the highest bycatch rates for shorraker/rougheye (2.3\%) and aggregated non-target rockfish (5.19%) in 1995. The TAC for POP in the Aleutian Islands in 1995 was area wide, but catch was concentated in Area 541 , with very little effort (9 observed hauls) in Area 543 . In 1996 the TAC was divided by areas, with 50% of the TAC designated for Area 543 , and 25% of the TAC each for Areas 542 and 541 . The bycatch rate for shorraker/rougheye in 1996 increased the more westerly the Area, and was 3.71% in $541,4.78 \%$ in 542 , and 5.55% in 543 . In contrast the bycatch rate for non-target aggregated rockfish was highest in Area $542(8.94 \%)$.

Comparisons of historical data with proposed MRB rates

Historical data are usefut in describing bycatch rates, and patterns in bycatch in the Aleutian Islands fisheries. However, there are several limitations in using historical observer data to predict or describe the effects of changes in MRB levels. The first caveat in using historical-data is that the data are collected on a haul-bythaul basis, and it is difficult to use the data to describe or characterize an entire trip or fishing week. MRBs are used to cap the retainable bycatch in a fishing week, so an examination of individual hauls has limited utility. Second, the observer database can only quantify observed hauls and there is no information available for unobserved hauls, further confounding che utility of observer data in describing a full fishing week. A third limitation to the observer data is that the total catch for each haul is recorded but the amount retained from the haul is not curtently provided, whereas MRBs apply to retained catch only. The fourth major caveat in using historical data is that the fisheries were prosecuted under an existing MRB level. Given that it is not possible to know if a haul was made in an effor to constrain bycatch or at the opposite extreme to "top off" up to the allowable MRB level, the data have limitations in describing either avoidance or "topping off" behavior. The POP fishery, for instance, operated under an MRB of 15% in 1995 and 1996. This may have provided an incentive to "top of" on other more valuable rockfish species, such as shortrakerfrougheye, however it is very difficult do distinguish the "top off" hauls from hauls which would nomally encounter shorraket/rougheve. It is impossible to know whether the few hauls which Eell into the shorrakerfougheye targer (for which there is no diected fishery) were the result of intentional catch for "topping off" purposes, or whether the shortaketrougheve were encountered as unevpeced, or non-intentional catch.

Aggregated Rockfish

Given a potential reduction in MRB rates in the Aleutian Islands Atka Mackere! fishery, a range of rates from the observer data were evamined. The current MRB for aggregated rockfish in the Bering Sea/Aleutian Islands is 5% for Atka Mackerel and all shallow-water fisheries. Shortrakerfougheye is currently included in the aggregated rockfish category. As discussed above, northern rockish are the principal rockfish species taken in the Atka Mackerel fishery, however, this fishery is one of the two main sources of shortraker/rougheye bycatch.

In the 1995 Aleutian Islands Atka Mackerel fishery, 1,211 observed hauls took 37,178 ms of groundfish, $51,556 \mathrm{mt}$ of Acka Mackerel, and $2,280 \mathrm{mt}$ of aggregated rockfish (Table 6). As discussed above, the average bycatch rate of aggregated rockfish for this fishery was 4.42% of the total Atka Mackerel catch. Approximately one-third, or 30.5% of the observed hauls caught rockfish at a rate greater than 5%, and these hauls represented approximately one-quarter of the directed catch of Acka Mackerel (23.4\%) and approximately three-quarters of the rockfish bycatch (73.9%). Similarly, 43.2% of the hauls experienced an aggregated rockfish bycatch rate above 3% and 84.4% of the rockfish were taken in these hauls. Approximately one-half of the hauls had byeatch rates above 2%, and these hauls accounted for roughly one-half of the directed catch (46.8%) and 90.7% of the rockfish bycatch.

A similar pattern was seen in the 1996 Atka Mackerel fishery in which 35.8% of the 1,653 observed hauls had rockfish bycatch rates above 5%. The overall average bycatch rate of rockfish in this year was 5.4%. Over one-quarter (28.5%) of the $68,852 \mathrm{mt}$ of Ava Mackerel were in the hauls wich rates greater than $j \%$, and those hauls represented 78.7% of the $3,715 \mathrm{mc}$ of bycaught rockfish. Nearly one-half (48%) of the hauls experienced bycatch rates above 3%, and these hauls accounted for 87.7% of the rockfish bycatch.

The MRB for aggregated rockfish in the POP nishery, a member of the deep-water fisheries group, was 15% in both 1995 and 1996 . The overall average bycatch rate of non-POP rockfish in the POP fishery was 5.09% in 1995 and 7.89% in 1996. In cotal, 210 hauls were observed in the 1995 POP nishery and 248 in the 1996 hishery (Table 6). The total observed grounditis catch in 1995 was 6,410 mi and the total in 1996 was $8,633 \mathrm{mt}$. Of the total catch, 3,351 me was POP in 1995 and 7,226 mt was POP in 1996 . The total non-POP aggregated rockfish bycatch in the POP fishery was 272 mt in 1995 and 570 mc in 1996.

The 1995 POP hauls for which the bycatch rate of non-target rocknish exceeded 15% (32 hauls) represented 15.2% of the total hauls, and these hauls accounted for 7.9% of the directed catch and 55.9% of the total non-POP rockfisi bycatch. The hauls with rockfish bycatch rates above 9% included 21.9% of the observed hauls and accounted for 12.8% of the POP catch and for over two-thirds or 67.4% of the total rockfish bycatch. Hauls with rates exceeding 7% made up approximately one-quatter (24.8%) of the hauls and caught nearly three-quarters of the rockfish byeach (72.1%). Hauls with rates above 5% made up 32.9% of the hauls and represented 22.9% of the POP catch and 80.0% of the aggregated non-POP bycatch.

Non-POP rockfish bycatch rates in the POP fishery were higher in 1996 than in 199;. Over one-quatter (25.8%) of the total POP hauts had aggregated rockfish bycatch rates above 15%, with 10% of the POP catch and 51.3% of the non-POP bycatch being taken in those tows. The bycatch rates exceeded 9% in 41.1% of the hauls and these hauls caught 27.5% of the POP and 76.9% of the non-POP rockfish. In hauls whth a bycatch rate above $7 \%, 33.1 \%$ of the POP catch was taken and 82.4% of the non-POP rockith were caught. Over one-half $(52,4 \%)$ of the POP hauls had rockfish bycatch rates above 5%, and
these hauls aiso caught 89% of the non-POP rockfish bycatch.

Shortraker/rougheye

Under the assumption that an MRB might be implemented separately for shortraker/rougheye rockfish the bycatch rates for shortraker/rougheye rockfish were examined in a manner similar to that for aggregated rockfish presented above. The caveats discussed above apply, and it should be kept in mind that the data were collected from fisheries with no specific rockfish restrictions except for the aggregated rockfish MRB and a TAC for shorraker/rougheye.

The overall bycath rates of shortraker/rougheye in the Aleutian Islands Acka Mackerel fishery were 0.09% in both 1995 and 1996, however overall observed catch and bycatch rates increased from 1995 to 1996. In total, 46 mc of shortraker/rougheye were observed in 1995 and 65 mat were observed in 1996.

Ocly 8 (or 0.7%) of the 1,211 observed Atka Mackerel hauls in 1995 exceeded a bycatch rate of 5% for shortaker/rougheye (Table 7). These hauls took only 0.3% of the total directed catch of A.ka Mackerel, but one-quarter (25.3%) of the observed bycatch of shortrakerfougheye. An additional four hauls took shortraker/rougheye at a rate exceeding 3%, and these 12 hauls represented 0.7% of the Atika Mackerel catch and 39.7% of the shorrakerlrougheye bycatch. One-half of the shorraker/rougheye (52.7%) were bycaught in Atka Mackerel hauls exceeding a bycatch rate of 2% in the haul, and nearly three-quarters (74%) were taken in hauls exceeding a bycatch rate of 1% in the haul. The hauls in which the bycatch rate exceeded 1% accounted for 3.6% of the hauls and 2.5% of the directed Atha Mackerel catch. The distribution of shorraker/rougheye bycatch in Atka Mackerel hauls by date in 1995 are provided in Figure 2. The majority of the hauls had no shomraketrougheye bycatch and hauls with bycatch were primatily between mid-March and mid-May.

In 1996, only 6 observed Aleutian Islands Atka Mackerel hauls (0.4\%) had a bycatch rate of shorraker/rougheye above 5%. These hauls represented 0.2% of the directed Atka Mackerel catch, and 24.3% of the total shorraker/rougheye bycatch. An additional five hauls had shortaker/rougheye bycatch rates exceeding 3%, and these 11 hauls represented 0.4% of the directed Adsa Mackerel catch and 32.5% of the total shortraker/rougheye bycatch. In total, 1.5% of the hauls exceeded a shortraker/rougheye bycatch rate of 2% and 3.1% exceeded a rate of 1%. Those exceeding a 2% bycatch rate took 1.1% of the directed eatch and 49.4% of the shortraker/rougheye bycatch. The hauls exceeding a 1% bycatch rate took 2.3% of the directed Atka Mackerel catch, and 70.2% of the shorraker/rougheye bycatch. Figure 3 shows the 1996 distribution of Atka Mackerel hauls by date with shortraker/rougheye bycatch rates. Fishing and bycarch both extended over a longer period than in 199j, but the majority of hauls with shortrakerfrougheye bycatch occurred in March and April. As in 1995, most of the hauls had no shortrakertrougheye bycarch.

The POP fishery had average shortaker rougheye bycatch rates of 2.11% and 5.08% in 1995 and 1996 , respectively, The observed bycatch of stortrakerfrougheye in the Aleutian !slands POP fishery more than tripled from 113 mt in 1995 to 367 mt in 1996.

In $1995,4.5 \%$ of the POP hauls were above a shortakerfougheye byeatch rate of 15% (Table 7). These 10 hauls caught 2.6% of the obsenved POP catch and 32.6% of the observed shorraierfougheye byeatch. A bycatch rate of 9% was exceeded by 7.1% of the hauls which took 4.0% of the directed POP catch and 29.8% of the shortrakerfrougheye bycatch. Ten percent of the hauls had a bycatch rate which was above
7%, and one-half of the shortraker/rougheye bycatch (50.2%) and 6.9% of the directed catch was taken in these hauls. Hauls with a rate exceeding a bycatch rate of 5% made up 14.8% of the total hauls, caught 10.1% of the POP, and bycaught 59% of the shortraket/rougheye. As deseribed above and in Table 7, approximately 85% of the hauls had bycarch rates betow 5% for shorrakerfrougheye, and this is indicated in Figure 4 which provides the distribution of the POP hauls in 1995 over time. Nearly one-third of the shortraker/rougheye bycatch was taken in the few hauls with very high bycatch rates. The POP fishery in 1995 generally occurred during the last week of February and the first wo weeks of March, and again during the first two weeks of April. Shorraker/rougheye bycatch appeared to be higher during the first of these two POP fisheries.

The percentage of hauls with a bycatch rate greater than 15% doubled from 1995 to 1996 , and 10.9% of the hauls fell in this category in 1996. The target catch in these hauls represented 6.1% of the tota! POP catch, and the shortrakerfrougheye bycatch was 36.8% of the total bycatch. A bycatch rate of 9% was exceeded by 22.2% of the POP hauls, and these hauls caught 19.8% of the POP catch and 67.3% of the shortraker/rougheye bycatch. The $7!$ hauls which had bycatch rates above 7% represented 28.6% of the totai hauls, 26.4% of the POP catch, and 77.6% of the shorraker/rougheye bycatch. Nearly one-third $(32.7 \%$) of the hauls exceeded a shortrakerfrougheye bycatch rate of 5%. These hauls caught 31% of the POP and 83% of the shortraker/rougheye bycatch. As indicated in Table 7 and in Figure 5, there were many more hauls in 1996 catching shorrakerfougheye at high rate than was the case in 1995. The 32.7% of hauls which had rares exceeding 3% in 1996 were more than double the percentage $(14.8 \%$) seen in 1995.

Table 7a presents ooserver data on the bycatch of shortrakerltougheve in the aggregate rockfish fishery; of which POP, sharpchin, and northern rockfish are the major species components. In comparison with Table 7, these data are consistent in showing that most of the SRRE bycatch is taken in the POP fishery. Of more interest is a comparison of Tables 7 and 7 a with Table 3, which shows the composition of retained catch in the rockfish and Akka mackerel fisheries. Table 8 indicates that the overall retention of SR/RE relacive to other ratained rockfish and Atka mackerel is only about 5 percent and 0.1 percent, respectively. These rates are significantly lower than the allowable MRB percentages of 15 and 5 percent, respectively. In fact, during the past three years, only 2 weekly reports indicate a retention of SRRE that might be in violation of MRB restrictions. Although the retained percentages of $S R / R E$ relative to ocher species is low, these percentages have increased since 1995 by 25 percent in the rockfish fisheries and 128 percent in the Atka mackerel fishery. Reasons for these increases likely relate to foverable market conditions for SR/RE and the apparent increase in overall bycatch rates.

In summary, whereas aggregated rockfish are commonly encountered in the Atka Mackerel fishery, and the overall observed bycatch rates are near the MRB levels, the majority of bycaught shortraker/rougheye are caught in only a few hauls. In $1995,74 \%$ of the byeaught shortraker/rougheye were taken in 3.6% of the Atha Mackerel hauls, and in ! $996,70.2 \%$ of the shorrakedrougheye were taken in 3.1% of the hauls. The POP fishery, on the other hand, has an overall bycatch rate of non-POP rockfish well below the established MRB of 15%, however, non-target rockfish are more commonly encountered in individual tows. There is also considerable vatiability between years in the POP fishery. Roughly 25% of the hauls caught rockfish at a rate greater than 7% in 1995, and these hauls accounted for 72% of the bycaught rockfish. In 1996. 46.4% of the hauls caught rockfish at a rate greater than 7%, and these hauls accounted for 82% of the rockfish bycatch. Similarly the hauls with shorrakerfrougheye bycatch rates above 7% in 1995 accounted for 10% of the hauls and tepresented 50% of the shorraker/rougheye bycatch, but in $1996,28.6 \%$ of the hauls exceeded 7% and these hauls accounted for 78% of the shortakeifougheye bycatch.

Industry reported data on retained catch composition do not indicate that MRB percentages are being violated. Instead, these data indicate that the current MRB percentages are fairly generous relative to the amounts of SRRE that actually is retained reiative to other retained catch. Since 1995, the ratio of retained amounts of SRRRE in the rockfish fisheries relative to other retained catch has ranged from 4.5 to 5.7 percent. The MRB percentage for SR/RE in this fishery is 15 percent. During the same time period, the retained amount of SR/RE in the Atka mackerel fishery relative to other retained catch has ranged from 0.08 to 0.2 percent. The MRB percentage for SRRE in this fishery is 5 percent.

At its September 1997 meeting, the Council recommended that MRB percentages for SRRE in the AI be reduced to 7 percent relative to other rockfish species, Greeniand turbot, sablefish and flathead sole and to 2 percent relative to other groundfish and non groundfish species. The MRB percentage relative to arrowtooth flounder would remain at 0 percent. These percentages are intended to reduce the incentive to top off target catch with SRRE white minimizing the potential for regulatory discards of SR/RE during a fishing trip. The catch rates of SR/RE should decrease accordingly. Nonecheless, overall bycatch amounts still could pose concern given the small TAC amounts annually specified for SR/RE and the high volume POP and Acka mackerel trawl fisheries in the AI. As a result, the Council intends to consider in the furure management measures that would authorize a gear allocation of SRRE so that inseason management actions can be taken to control trawl bycatch more effectively without threatening the closure of the fixed gear tisheries.

2.0 NEPA REQUIREMENTS: ENVIRONMENTAL IMPACTS OF THE ALTERNATIVES

An environmental assessment (EA) is required by the National Envirommental Policy Act of 1969 (NEPA) to detemine whether the action considered will result in significant impact on the human envitonment. If the action is determined not to be significant based on an analysis of relevant considerations, the EA and resulting finding of no significant impact (FONSI) would be the final environmental documents required by NEPA. An environmental impact statement (EIS) must be prepared for major Federal actions significantly affecting the human environment.

An EA must include a brief discussion of the need for the proposal, the altematives considered, the environmental impacts of the proposed action and the alternatives, and a list of document preparers. The purpose and alcernatives were discussed in Sections 1.1 and 1.2 , and the list of preparers is in Section 7. This section contains the discussion of the envirommental impacts of the altematives including impacts on threatened and endangered species, critical habitat, and marine marnmals.

2.1 Environmental Impacts of the Alternatives

The environmental impacts generally associated with fishery management actions are effects resulting from (1) harvest of fish stocks which may result in changes in food availabitity to predators and scavengers, changes in the population structure of target fish stocks, and changes in the marine ecosystem comnunity structure: (2) changes in the physical and biological structure of the marine environrnent as a result of fishing practices, e.g., effects of gear use and fish processing discards; and (i) entanglement/entrapment of non-target organisms in active or inactive fishing gear.

The environmental impacts of the groundfish specifications (TACs) are assessed annually in the
envionmencal assessment prepared for these specincations. MRB pertemages provide a management tool so facilitate the montoring and mangement of specis' harvest amouns within speched TACs. IFMRBs provide an opportunity for incrased havest rates of a becath species or a basis species through "topping off activity in a manner that results in TACs being reached bebre the end of the fisting year, then NMFS is required to put the affected species on prohibited species status. liovertishing is not of concem, the species will continue to be taken incidental to other fishing operations, but must be ciscarded. Wiile regulatory discards are a sourex of public concem, they do not necessanily create consenvation problems. If anainment of a TAC and subsequent bycarch amouncs present a porential overfishing concem, MMFS is required to take action to prohibi all fshing activites that weke the affected species incidenally.

Sometmes, unanticipated changes in fishing pattems tegether win the fast-paced, competive nature of the groundfish fisheries creates a situation where harvest amounts reach the overfishing level before MMFS can iake preventative action. To the extent that Altemative 2 would implement reductions to spectited MRB , slower harvest rates would result, management ability would be enianced to maintain harvest amouns within specined TACs, ane the potential of reaching overnishing leveis would be lessened. This atemative, therefore, would facilitate NMFS's abilicy to manage fisheries within the TAC levels assessed by the arnual EA prepared for the groundfish specifications and within the scope of effects the annual EA detemines these harvest levels may have on the biological envitonment as well as associated impaces on manine manmals, seabirds, and other endangered or threatened species and critical habiat.

A description of the effects of the 1997 TACs on the biological entronment and associated impacts on marine marmals, seabirds, and other endangered or threatened species and criticai habiot is ser out in the final EA prepared for the 1997 specifications (NMFS (997).

2.2 Coastal Zone Management Act

Implementation of the preferred altemative would be conducted in a maner: consistent, to the maximum extent practicable, with the Alaska Coastal Management Progem whitn the meaning of Section $30(\mathrm{c})(\mathrm{L})$ of the Coastal Zone Management Act of 1972 and its implententing fegulations.

2.3 Conclusions or Finding of No Signiffeant Impact

None of the alternatives are likely to significantly affect the qualty of the human environnent, and the preparation of an environmental impaet statement for the proposed action is not required by Section 102(2)(C) of the National Enviromental Policy Act or is implementing regulations.

3.0 REGULATORY IMPACT REVIEW: ECONOMIC AND SOCIOECONOMCIMPACTS OF THE ALTERNATIVES

This section provides information about the economic and socioeconomic impacts of the alternatives including identification of the individuals or groups that may be affected by the action, the nature of these impacts, quantification of the economic impacts if possible, and discussion of the trade offs between qualitative and quantitative benefits and costs.

The requirements for all reguatory actions specified in E.O. 12866 are summarized in the following statement from the order:

In deciding whecher and how to regulate, agencies should assess all costs and benefits of available regulatory altematives, including the alternative of not regulating. Costs and benefits shall be understood to include both quantifiable measures (to the fullest extent that these can be usefully estimated) and qualitative measures of costs and benefits that are difficult to quantify, but nevertheless essential to consider. Further, in choosing among altemative regulatory approaches, agencies should select those approaches that maximize net benefits (including potential economic, environment, public health and safery, and other advantages; distributive impacts; and equity). unless a statute requires another regulatory approach.

This section also addresses the requirements of both E.O. 12866 and the Regulatory Flexibility Act (RFA) to provide adequate information to determine whecher an action is "significant" under E.O. 12866 or will result in "significant" impacts on small entities under the RFA.
E. O. 12866 requires that the Office of Management and Budget review proposed regulatory programs that are considered to be "significant". A "significant regulatory action" is one that is likely to:
(1) Have an annual effect on the economy of $\$ 100$ million or more or adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, puolic health or safety, or State, local, or tribal govemments or communities;
(2) Create a serious inconsistency or othervise interfere with an action taken or pianned by another agency;
(3) Materially alter the budgetary impact of entitlements, grants, user fees, or loan programs or the rights and obligations of recipients thereof; or
(4) Raise novel legal or policy issues arising out of legal mandates, the President's priorities, or the principles set forth in this Executive Order.

A regulatory program is "economically significant" if it is likely to resuit in the effects described above. The RIR is designed to provide information to determine whether the proposed regulation is likely to be "economically sigrificant."

3.1 Economic Impact on Small Entities

The objective of the RFA is to require consideration of the capacity of those affected by regulations to bear
the direct and indirect costs of regulation. If an action will have a significant impact on a substantial number of small entities an Intiai Regulatory Flexibility Analysis (IRFA) must be prepared to idencify the need for the action, alternatives, potential costs and benefts of the action, the cistribution of these impacts, and a determination of net benefits.

The small Business Adruinisration has defined all fish-harvesting or hatchery busitesses that are independently owned and operated, not dominant in their field of operation, with annual receipts not in excess of $\$ 3,000,000$ as small businesses. In additional, seafood processors wich 500 employees to tewer, wholesale industry members with 100 employees or fewer, not-for-profit enterprises, and govemment jurisdictions with a populations of 50,000 or less are considered small enticies. NMFS has decermined that a "substantial number" of small entities would generally be 20% of the total universe of small entities affected by the regulation. A regulation would have a negative "signinicant impact" on these small enticies if it reduced annual gross revenues by more thant 5 percent, increased toral costs of production by more than δ percent, or resufted in compliance costs for small entites that are at least 10 percent higher than compliance coses as a percent of sales for large entities.

A substantial number of fishing vessels could be affected by the proposed change in MRB percentages. The table below presents data summarizing the number of vesseis by gear and area that harvested Alaska groundfish in 1995. These data include some vessels that would not be consideted "small encities" for purposes of the RFA because their gross annual revenues exceed $\$ 3$ million, although the preponderance of vessels experience annual revenues less than this amount.

Statistics on number of vessels (catcher vessels and catcherfprocessor vessels) that caught groundfish by aren, gear and target fishery in 199". Data is excerpled from the "Economic Stutus of the Groundfish Fisheries off Alaska, $1995^{\prime \prime}$ chapter of the draft 1997 SAFE report (NPFMC 1996).

Trawl GQA ESA1 Alldaska								
All groundfish	220		184		268			
pollock	138		156		199			
Sablefish	4		6		10			
Pacific cod	134		123		225			
Flatish	$27 \quad 65$		$14 \quad 38$		128			
Rockfisa			28					
Acka Mackerel	2				17		13	
Hook and Line								
All groundfish	1,351	3	175	44	1,403			
sablefish	684		90		690			
Pacific cod	525		100		594			
Flarish					598			
Rockntish	582		21					
Pot								
All groundith	191		126		266			
Pacific cod	190		124		265			

The proposed accion under Altemative 2 would impact primarivy traw catcher/processor vessels in the Aleutian Island subarea that are used to fish tor either Pacific ocean perch or Adka mackerel. In 1996, 15 trawi catcher/processor vessels rewined SRRE, most of chem white participating in these owo fisheries. Also in 1996,16 freezer longline vessels also retained SRRE white participating in either the Pacific cod, sablefish, or Greenland turbor fishery. Based on 1996 ADF $2 G$ hish ticker data, 48 catcher vessels delivered $\mathrm{SR} / \mathrm{RE}$ to shoreside processors, although landed amounts were small ($3,000 \mathrm{lbs}$) relarive to the 1996 CR retained catch (about 750 mt). Wising an assumed exvessel price of $\$ 1.10$ per pound 'the tocal value of the 1996 shortraker/rougheye retained catch is estimated ar $\$ 1.8$ milliont. The potential cost in terms of foregone harvest opportunty to trawl and fixed gear vessels that are prevented from fishing for other species to prevent overfishing of SR/RE would vary depending on the fishery and foregone harest amounc.

A significant negative economic impact on the catcher vessels that retain SRRE is not likely as a result of the proposed action given the small amounts of hese rockith species tha: have been retained by catcher vessels fishing in the AI subarea in pass years. Conversely, che proposed action is expected to have a positive impact to the extent that the reduced MRBs parcentages for SR/RE would reduce the potenial for reaching the specified overfishing level and limit the number of required fishery closures neeessary to keep bycatch amounts rates of SRRE at a minimum. Given the above assessmert, NMFS has determined that the proposed action would not result in a significant economic impact on a substantial number of small entities. As a result, a regulatory flevibility analysis was not prepared.

If the chosen altemative for reduced $M t R B$ perentages do not sufficently reduce bycatch rates to avoid reaching SRRE TAC early in the fisting year of the SRIRE oveitishing level, the Council likely will need to consider additional management measures to constrain the impact of SRRE bycalch in one fishery on other subsequent fisheries that also may take bycarch amounts of SR/RE during harvest operations for targeted species.

None of the diternatives is expected to resuit in a "signifitant regulatory action" as defined in E.O. 12866.

4.0 REFERENCES

Heitetz, J. and D. Ackley. 1997. Bycatch in rockfish fisheries of the Gulf of Alaska. Presented to the Nomh Pacifis Fishery Management Counchl during its April 1997 meeting.

1to, D.H. and J.N laneli. 1996. Pacific Ocean Perch. In the Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Beriag Seavieutian Islands Region. 483 pp . North Pacific Fishery Management Council, 605 W .4 th Avenue. Anchoerage, Ak 99301.

National Marine Fisheries Service (NMFS). 1997. Final Environmental Assessment for 1996 Total Allowable Catch Specifications. NMFS-Alaska Region, P.O. Bo: 21668 . Juneau, Alaska $99802-1668$.
North Pacific Fishery Management Council (NPFMC). 1996. Economic Status of the Groundfish Fishories

Based on industry reported 1996 exvessel prica for fixed gear landings of shormakerfrougheye rockith.
off Alaska, 1995 - Stock Assessment and Fishery Evaluation Report for the Groundish Resources of the Bering Sea/Aleutian Islands and for the Gulf of Alaska as projected for 1997. Augusi 1990.

3.0 AGENCIES AND INDIVIDUALS CONSULTED

Mary Furuness
NMFS
Alaska Region
P.O. Bex 21668
Joe Terry
Alaska Fisheries Science Center
7600 Sand Point Way
Seatle, WA $98115-0700$

6.0 LIST OF PREPARERS

David Ackley
Alaska Department of Fish and Game
Commercial Fish Division
1255 W. 8th Street
P.O. Box 25526
Junesu, AK 99802
Sue Salveson
NMFS, Maska Region
P.O. Box 21668
Juneau AK 99802

Andy Smoker NMFS, Alaska Region
P.O. Box 21668

List of Tables
Table 1. Bering Sea and Aleutian Islands management area maximum retainable bycatch percentages.
Table 2. Percentage of observed weight of groundrish catch and catrch of POP, SRVE and coal rockfish in Aleutian Islands fisheries.
Table 3. Summary of catch and bycatch in observer hauls from all targets.
Table 4. Average bycarch rates of rockfish in the A Atka mackerel fishery.
Table 3. Average bycatch rates of rockfish in the Al Pacific ocean perch fishery.
Table 6. Observed bycatch of aggregated tockfish in the Acka mackerel and POP fisheries.
Table 7. Observed bycatch of SRRE in the Akn mackerel and POP fisheries.
Table 7a. Observed bycatch of SR/RE in the rocknish fishery'
Table 3. Recained catch of SR/RE in the rockfish and Adka mackerel fisheries

List of Figures

Figure 1. Reporting areas of the BSA!
Figura 2. Observed SR/RE bycatch in the A1 Atka mackere! Fishery. 1995.
Figure 3. Obsered SRRE bycacch in the il Pacific ocean perch fistery, 1995.

Figure 4. Observed SRRE bycatch in the A1 Atha mackerel fishery, 1996.
Figure 5. Observed SRRE bycaich in the AJ Pacific ocean perch fishery, 1996.

Thbe - - Berme Sca and Alenan Islmds Mamement Arta Reminable Percemages

